Add like
Add dislike
Add to saved papers

Tetranuclear cobalt(ii)-isonicotinic acid frameworks: selective CO 2 capture, magnetic properties, and derived "Co 3 O 4 " exhibiting high performance in lithium ion batteries.

Two new 3D cobalt metal-organic frameworks (MOFs), [Co4(CH3COO)(in)5(μ3-OH)2]·2H2O (1) and [Co4(SO4)2(in)4(DMF)2]·3DMF (2) (Hin = isonicotinic acid), have been prepared through the anion template method. Compound 1 consists of rare odd-number connected (9-connected) cubane-like SBUs, while compound 2 consists of 8-connected high-symmetry square-planar clusters. Magnetic studies indicate that compound 1 exhibits spin-canting antiferromagnetic ordering, while compound 2 shows antiferromagnetic behavior. At 273 K and 1 bar, compound 1 exhibits a high CO2 selectivity over CH4 and a significant CO2 uptake of 13.6 wt%, which is higher than that of 2 (8.5 wt%). Furthermore, compound 1 was then transformed into ultrasmall Co3O4 nanoparticles via simple but effective annealing treatment. Electrochemical measurements show that the Co3O4 nanospheres derived from compound 1 exhibited high and stable lithium storage properties (1100 mA h g-1 after 100 cycles at 200 mA g-1) and excellent rate capabilities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app