Add like
Add dislike
Add to saved papers

Oxidizing Vacancies in Nitrogen-Doped Carbon Enhance Air-Cathode Activity.

Advanced Materials 2018 December 6
Oxidizing vacancies in nitrogen-doped carbon have recently been reported to enhance the oxygen reaction activity of air cathodes, but their specific role has remained elusive and controversial. Herein, the critical role of oxidizing the vacancies in enhancing the oxygen reduction reaction for metal-air battery is identified with density functional theory. Deliberate introduction of oxygen-enriched vacancies in nitrogen-doped carbon is shown experimentally to provide superior oxygen reduction activity. In situ X-ray powder diffraction gives direct observation of the oxygen reactions in a zinc-air battery catalyzed by vacancy-enriched oxidized carbon; the intensity changes of the carbon peak show continuous chemisorption of oxygen intermediates on the carbon cathode during discharge. The air-cathode performance is shown to exceed that with Pt/C+IrO2 catalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app