Add like
Add dislike
Add to saved papers

Comparison of in vivo lung morphometry models from 3D multiple b-value 3 He and 129 Xe diffusion-weighted MRI.

PURPOSE: To compare in vivo lung morphometry parameters derived from theoretical gas diffusion models, the cylinder model and stretched exponential model, in a range of acinar microstructural length scales encountered in healthy and diseased lungs with 3 He and 129 Xe diffusion-weighted MRI.

METHODS: Three-dimensional multiple b-value 3 He and 129 Xe diffusion-weighted MRI was acquired with compressed sensing at 1.5 T from 51 and 31 subjects, respectively, including healthy volunteers, ex-smokers, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease patients. For each subject, the stretched exponential model-derived mean diffusive length scale (LmD ) was calculated from the diffusion signal decay, and was compared with the cylinder model-derived mean chord length (Lm) and mean alveolar diameter (LAlv ) in order to determine the relationships among the different lung morphometry parameters.

RESULTS: For both 3 He and 129 Xe diffusion-weighted MRI, the mean global LmD value was significantly related (P < .001) to Lm in a nonlinear power relationship, whereas the LAlv demonstrated excellent linear correlation (P < .001) with LmD . A mean bias of +1.0% and - 2.6% toward LmD was obtained for Bland-Altman analyses of 3 He and 129 Xe LmD and LAlv values, suggesting that the two morphometric parameters are equivalent measures of mean acinar dimensions.

CONCLUSION: Within the experimental range of parameters considered here for both 3 He and 129 Xe, the stretched exponential model-derived LmD is related nonlinearly to cylinder model-derived Lm, and demonstrates excellent agreement with the cylinder model-derived LAlv .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app