Add like
Add dislike
Add to saved papers

Utility of lacrimal caruncle infrared thermography when monitoring alterations in autonomic activity in healthy humans.

PURPOSE: Physiological markers that estimate sympathetic activation may be used to infer pain and stress in humans. To date, effective reproducible methods are invasive and pose an undesired risk to participants. Previous work in animal models has used infrared thermography to measure the temperature of the lacrimal caruncle region and may be a promising method for measuring stress and pain non-invasively. The current study aimed to determine whether this method is useful in humans.

METHODS: Sixteen young healthy participants (age: 18-35) were recruited and underwent sympathetic activation using a cold pressor test (CPT) and a muscle chemoreflex (MCR), and completed a control trial. Throughout all trials, infrared thermographic imaging of the lacrimal caruncle, heart rate, heart rate variability, mean arterial blood pressure and pulse transit time were measured.

RESULTS: Heart rate (MCR: 4 ± 3 bpm, CPT: 17 ± 4 bpm p < 0.01) and mean arterial pressure increased (MCR: 6 ± 2, CPT: 5 ± 2 mmHg, p < 0.01) and pulse transit time decreased (p = 0.03) with both sympathetic activation interventions. However, lacrimal caruncle temperature did not vary under any condition remaining at 35.2 ± 0.2 °C which was similar to baseline.

CONCLUSIONS: Our findings suggest infrared thermographic monitoring of eye temperature in humans does not reliably relate to sympathetic activation. This could be due to hemodynamic responses at the lacrimal caruncle that may be more complex than previously proposed with sympathetic activation. Alternatively, pulse transit time seems like a promising non-invasive measure of changes in sympathetic activation in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app