Add like
Add dislike
Add to saved papers

S-Allyl Cysteine Alleviates Hydrogen Peroxide Induced Oxidative Injury and Apoptosis through Upregulation of Akt/Nrf-2/HO-1 Signaling Pathway in HepG2 Cells.

Hydrogen peroxide (H2 O2 ) mediated oxidative stress leading to hepatocyte apoptosis plays a pivotal role in the pathophysiology of several chronic liver diseases. This study demonstrates that S-allyl cysteine (SAC) renders cytoprotective effects on H2 O2 induced oxidative damage and apoptosis in HepG2 cells. Cell viability assay showed that SAC protected HepG2 cells from H2 O2 induced cytotoxicity. Further, SAC treatment dose dependently inhibited H2 O2 induced apoptosis via decreasing the Bax/Bcl-2 ratio, restoring mitochondrial membrane potential (∆Ψm ), inhibiting mitochondrial cytochrome c release, and inhibiting proteolytic cleavage of caspase-3. SAC protected cells from H2 O2 induced oxidative damage by inhibiting reactive oxygen species accumulation and lipid peroxidation. The mechanism underlying the antiapoptotic and antioxidative role of SAC is the induction of the heme oxygenase-1 (HO-1) gene in an NF-E2-related factor-2 (Nrf-2) and Akt dependent manner. Specifically SAC was found to induce the phosphorylation of Akt and enhance the nuclear localization of Nrf-2 in cells. Our results were further confirmed by specific HO-1 gene knockdown studies which clearly demonstrated that HO-1 induction indeed played a key role in SAC mediated inhibition of apoptosis and ROS production in HepG2 cells, thus suggesting a hepatoprotective role of SAC in combating oxidative stress mediated liver diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app