Add like
Add dislike
Add to saved papers

Regulated proteolysis of p62/SQSTM1 enables differential control of autophagy and nutrient sensing.

Science Signaling 2018 December 5
The multidomain scaffold protein p62 (also called sequestosome-1) is involved in autophagy, antimicrobial immunity, and oncogenesis. Mutations in SQSTM1 , which encodes p62, are linked to hereditary inflammatory conditions such as Paget's disease of the bone, frontotemporal dementia (FTD), amyotrophic lateral sclerosis, and distal myopathy with rimmed vacuoles. Here, we report that p62 was proteolytically trimmed by the protease caspase-8 into a stable protein, which we called p62TRM We found that p62TRM , but not full-length p62, was involved in nutrient sensing and homeostasis through the mechanistic target of rapamycin complex 1 (mTORC1). The kinase RIPK1 and caspase-8 controlled p62TRM production and thus promoted mTORC1 signaling. An FTD-linked p62 D329G polymorphism and a rare D329H variant could not be proteolyzed by caspase-8, and these noncleavable variants failed to activate mTORC1, thereby revealing the detrimental effect of these mutations. These findings on the role of p62TRM provide new insights into SQSTM1 -linked diseases and mTORC1 signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app