Add like
Add dislike
Add to saved papers

Deposition of Cellulose-Based Thin Films on Flexible Substrates.

Materials 2018 November 31
This study investigates flexible (polyamide 6.6 PA-6.6, polyethylene terephthalate PET, Cu, Al, and Ni foils) and, for comparison, stiff substrates (silicon wafers and glass) differing in, for example, in surface free energy and surface roughness and their ability to host cellulose-based thin films. Trimethylsilyl cellulose (TMSC), a hydrophobic acid-labile cellulose derivative, was deposited on these substrates and subjected to spin coating. For all the synthetic polymer and metal substrates, rather homogenous films were obtained, where the thickness and the roughness of the films correlated with the substrate roughness and its surface free energy. A particular case was the TMSC layer on the copper foil, which exhibited superhydrophobicity caused by the microstructuring of the copper substrate. After the investigation of TMSC film formation, the conversion to cellulose using acidic vapors of HCl was attempted. While for the polymer foils, as well as for glass and silicon, rather homogenous and smooth cellulose films were obtained, for the metal foils, there is a competing reaction between the formation of metal chlorides and the generation of cellulose. We observed particles corresponding to the metal chlorides, while we could not detect any cellulose thin films after HCl treatment of the metal foils as proven by cross-section imaging using scanning electron microscopy (SEM).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app