Add like
Add dislike
Add to saved papers

Amphoteric poly(amido amine)s with adjustable balance between transfection efficiency and cytotoxicity for gene delivery.

In order to balance transfection efficiency and cytotoxicity as well as screen the optimal polymers for gene delivery, a series of amphoteric copolymers (poly(CBA-AGM/GABA)s) composed of different ratios between agmatine (AGM) and γ-aminobutyric acid (GABA) monomers were synthesized. The AGM containing positively charged guanidinium groups was used to improve transfection efficiency, while the GABA containing negatively charged carboxyl groups was used to decrease cytotoxicity. It is hypothesized that the amphoteric poly(CBA-AGM/GABA)s synthesized at the optimal ratio of both components would well balance transfection efficiency and cytotoxicity. By comparing these polymers' essential features in gene delivery, the ideal ratio between AGM and GABA was optimized. AGM80, which contained 80% AGM and 20% GABA, showed favorable properties for gene delivery, including moderate DNA condensation capacity, high cellular uptake, strong nuclear localization ability, high transfection efficiency, and low cytotoxicity, indicating that this polymer is very promising as a potent and nontoxic gene carrier.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app