Add like
Add dislike
Add to saved papers

Acid stress induces cross-protection for cadmium tolerance of multi-stress-tolerant Pichia kudriavzevii by regulating cadmium transport and antioxidant defense system.

The toxicity of cadmium (Cd) is the major limitation to its removal using microorganisms. The Cd tolerance of Pichia kudriavzevii was obviously enhanced by acid stress based on multi-stress cross-protection. RNA-Seq showed that most differentially expressed genes (DEGs) in the Pentose phosphate pathway, Citrate cycle (TCA cycle), Glycolysis/Gluconeogenesis, Peroxisome and Glutathione metabolism were up-regulated by acid stress. The up-regulated expression of genes related to ATP synthesis (GOR1, ALD5, ADH4, ADH6, MDH2, IDH1, IDH2, and ATP19) and Cd transport (GSTY2, GTO2, GLO2, and YOR1), and the improvement of intracellular GSH level and GST activity, reduced the Cd toxicity towards P. kudriavzevii. Cd efflux by YOR1 played a key role in the decline of intracellular Cd level. Acid stress obviously improved the gene expression levels and activities of antioxidant enzymes (SOD, POD, and CAT), which inhibited the Cd-induced ROS outburst and oxidative damage of proteins and membrane lipids. In addition, the enhanced expression of HSP12 protected P. kudriavzevii from the damage of Cd stress. These results provide some important clues to reconstruct robust strains using for Cd removal in aquatic environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app