Add like
Add dislike
Add to saved papers

Fate of tetracycline and sulfonamide resistance genes in a grassland soil amended with different organic fertilizers.

This study provided an assessment of the environmental fate of antibiotic resistance genes (ARGs) in a Scottish grassland field repeatedly treated with different organic fertilizers. The impacts of manure, biosolids and municipal food-derived compost on the relative abundances of tetracycline ARGs (tetA, tetB, tetC, tetG and tetW), sulfonamide ARGs (sul1 and sul2) and class 1 integron-integrase gene (IntI1) in soils were investigated, with inorganic fertilizer (NPK) as a comparison. The background soil with a history of low intensity farming showed a higher total relative abundance of tet ARGs over sul ARGs, with tetracycline efflux genes occurring in a higher frequency. In all treatments, the relative abundances of most ARGs detected in soils decreased over time, especially IntI1 and tet ARGs. This general attenuation of soil ARGs is a reflection of changes in the soil microbial community, which is supported by the result that almost all the soils at the end of the experiment had different bacterial communities from the untreated soil at the beginning of the experiment. Multiple applications of organic fertilizers to some extent counteracted the decreasing trend of soil ARGs relative abundances, which resulted in higher ARGs relative abundances in comparison to NPK, either by a lesser decrease of IntI1 and tet ARGs or an increase of sul ARGs. The enhancement of existing soil ARG prevalence by organic fertilizers was strongly dependent on the organic fertilizer type and the particular ARG. Compost contained the lowest relative abundance of inherent ARGs and had the least effect on the soil ARG decrease after application. The relative increase of tet ARGs caused by biosolids was larger than that of sul ARGs, while manure caused the opposite effect. Fertilization practices did not exert effective impacts on the soil bacterial community, although it caused significant changes in the profile of the ARG pool. Organic fertilization may thus accelerate the dissemination of ARGs in soil mainly through horizontal gene transfer (HGT), consistent with the enrichment of IntI1 in organic fertilized soils.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app