Add like
Add dislike
Add to saved papers

Genotype Differences in Sensitivity to the Anticonvulsant Effect of the Synthetic Neurosteroid Ganaxolone During Chronic Ethanol Withdrawal.

Neuroscience 2018 December 2
Sensitivity to anticonvulsant effects of the γ-aminobutyric acidA receptor-active neurosteroid allopregnanolone (ALLO) during ethanol withdrawal varies across genotypes, with high sensitivity in genotypes with mild withdrawal and low sensitivity in genotypes with high withdrawal. The present studies determined whether the resistance to ALLO during withdrawal in mouse genotypes with high handling-induced convulsions (HICs) during withdrawal could be overcome with use of ganaxolone (GAN), the metabolically stable derivative of ALLO. In separate studies, male and female Withdrawal Seizure-Prone (WSP-1) and DBA/2J (D2) mice were exposed to air (controls) or 72 hour ethanol vapor and then were scored for HICs during withdrawal (hourly for the first 12 hours, then at hours 24 and 25). After the HIC scoring at hours 5 and 9, mice were injected with 10 mg/kg GAN or vehicle. Area under the HIC curve (AUC) for hours 5 - 12 was analyzed. In control WSP-1 mice, GAN significantly reduced AUC by 52% (males) and 63% (females), with effects that were absent or substantially reduced during withdrawal. In contrast, GAN significantly reduced AUC in both control and ethanol-withdrawing male and female D2 mice. AUC was decreased by 81% (males) and 70% (females) in controls and by 35% (males) and 21% (females) during withdrawal. The significant anticonvulsant effect of GAN during withdrawal in D2 but not WSP-1 mice suggests that different mechanisms may contribute to ALLO insensitivity during withdrawal in these two genotypes. Importantly, the results in D2 mice suggest that GAN may be a useful treatment for ethanol withdrawal-induced seizures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app