Add like
Add dislike
Add to saved papers

Process Intensification for O 2 -Dependent Enzymatic Transformations in Continuous Single-Phase Pressurized Flow.

Oxidative O2 -dependent biotransformations are promising for chemical synthesis, but their development to an efficiency required in fine chemical manufacturing has proven difficult. General problem for process engineering of these systems is that thermodynamic and kinetic limitations on supplying O2 to the enzymatic reaction combine to create a complex bottleneck on conversion efficiency. We show here that continuous flow (micro)reactor technology offers a comprehensive solution. It does so by expanding the process window to the medium pressure range (here: ≤ 34 bar) and thus enables biotransformations to be conducted in a single liquid phase at boosted concentrations of the dissolved O2 (here: up to 43 mM). We take reactions of glucose oxidase and D-amino acid oxidase as exemplary cases to demonstrate that the pressurized microreactor presents a powerful engineering tool uniquely apt to overcome restrictions inherent to the individual O2 -dependent transformation considered. Using soluble enzymes in liquid flow, we show reaction rate enhancement (up to 6-fold) due to the effect of elevated O2 concentrations on the oxidase kinetics. When additional catalase was employed to recycle dissolved O2 from the H2 O2 released in the oxidase reaction, product formation was doubled compared to the O2 supplied, in the absence of transfer from a gas phase. A packed-bed reactor containing oxidase and catalase co-immobilized on porous beads was implemented to demonstrate catalyst recyclability and operational stability during continuous high-pressure conversion. Product concentrations of up to 80 mM were obtained at low residence times (1 - 4 min). Up to 360 reactor cycles were performed at constant product release and near-theoretical utilization of the O2 supplied. Therefore, we show that the pressurized microreactor is practical embodiment of a general reaction-engineering concept for process intensification in enzymatic conversions requiring O2 as the cosubstrate. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app