Add like
Add dislike
Add to saved papers

Sandwiched Graphene Interdiffusion Barrier for Preserving Au@Pt Atomically Thin Core@Shell Structure and the Resulting Oxygen Reduction Reaction Catalytic Activity.

The concept of a core-shell metallic structures, with a few atomic layers of the "shell" metal delineated from the "core" metal with atomic sharpness opens the door to a multitude of surface-driven materials properties that can be tuned. However, in practice, such architectures are difficult to retain due to the entropic cost of a segregated near-surface architecture, and the core and surface atoms inevitably mix through interdiffusion over time. We present here a systematic study of interdiffusion in a Pt on Au core-shell architecture and the role of an interrupting single layer of graphene sandwiched between them. The physical and chemical structure of the (near)surface is probed mean-free-path tuned x-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM), and electrochemistry (the oxygen reduction reaction, ORR). We find that at operating temperatures above 100 °C, there is potential for interdiffusion to occur between the primary and support metals of the core/shell catalyst system, which can diminish the catalyst activity towards ORR. The introduction of a single-layer graphene, as an interface between the core and shell metal layers, acts as a barrier that prevents unwanted surface alloying between the layered metals. HRTEM imaging shows that fully wetted Pt monolayers can be grown on a graphene template, allowing a high level of surface utilization of the catalyst material. We present how the use of graphene as a barrier to diffusion mitigates the loss of surface catalytic sites, showing much improved retention of Pt monolayer surface at elevated temperatures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app