Add like
Add dislike
Add to saved papers

Bayesian model of disease progression in GNE myopathy.

Statistics in Medicine 2018 December 4
One Sentence Summary: A Bayesian repeated measures model based on quantitative muscle strength data from a prospective Natural History Study was developed to determine disease progression and design clinical trials for GNE myopathy, a rare and slowly progressive muscle disease. GNE myopathy is a rare muscle disease characterized by slowly progressive weakness and atrophy of skeletal muscles. To address the significant challenges of defining the natural history and designing clinical trials for GNE myopathy, we developed a Bayesian latent variable repeated measures model to determine disease progression. The model is based on longitudinal quantitative muscle strength data collected as part of a prospective Natural History Study. The GNE Myopathy Progression Model provides an understanding of disease progression that would have otherwise required a natural history of unfeasible duration. "Disease age," the model-generated measure of disease progression, highly correlates with a variety of clinical, functional and patient-reported outcomes. With the incorporation of a treatment effect parameter to the GNE Disease Progression Model, we describe a novel GNE Myopathy Disease Modification Analysis that significantly increases power and reduces the number of subjects required to test the effectiveness of novel therapies when compared to more traditional analysis methods. The GNE Myopathy Disease Progression Model and Disease Modification Analysis can be applied to muscle diseases with prospectively collected muscle strength data, and a variety of rare and slowly progressive diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app