Add like
Add dislike
Add to saved papers

Chemo- and Regioselective Dihydroxylation of Benzene to Hydroquinone Enabled by Engineered Cytochrome P450 Monooxygenase.

Angewandte Chemie 2018 December 5
Hydroquinone (HQ) is produced commercially from benzene by multi-step Hock-type processes with equivalent amounts of acetone as side-product. We describe an efficient biocatalytic alternative using the cytochrome P450-BM3 monooxygenase. Since the wildtype enzyme does not accept benzene, a semi-rational protein engineering strategy was developed. Highly active mutants were obtained which transform benzene in a one-pot sequence first into phenol and then regioselectively into HQ without any overoxidation. A computational study shows that the chemoselective oxidation of phenol by the P450-BM3 variant A82F/A328F leads to the regioselective formation of an epoxide intermediate at the C3=C4 double bond, which departs from the binding pocket and then undergoes fragmentation in aqueous medium with exclusive formation of HQ. As a practical application, an E. coli designer cell system was constructed, which enables the cascade transformation of benzene into the natural product arbutin, which has anti-inflammatory and anti-bacterial activities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app