Add like
Add dislike
Add to saved papers

The roles of prostaglandin F 2 in regulating the expression of matrix metalloproteinase-12 via an insulin growth factor-2-dependent mechanism in sheared chondrocytes.

Osteoarthritis (OA) was recently identified as being regulated by the induction of cyclooxygenase-2 (COX-2) in response to high fluid shear stress. Although the metabolic products of COX-2, including prostaglandin (PG)E2 , 15-deoxy-Δ12,14 -PGJ2 (15d-PGJ2 ), and PGF2α , have been reported to be effective in regulating the occurrence and development of OA by activating matrix metalloproteinases (MMPs), the roles of PGF2α in OA are largely overlooked. Thus, we showed that high fluid shear stress induced the mRNA expression of MMP-12 via cyclic (c)AMP- and PGF2α -dependent signaling pathways. Specifically, we found that high fluid shear stress (20 dyn/cm2 ) significantly increased the expression of MMP-12 at 6 h ( > fivefold), which then slightly decreased until 48 h ( > threefold). In addition, shear stress enhanced the rapid synthesis of PGE2 and PGF2α , which generated synergistic effects on the expression of MMP-12 via EP2/EP3-, PGF2α receptor (FPR)-, cAMP- and insulin growth factor-2 (IGF-2)-dependent phosphatidylinositide 3-kinase (PI3-K)/protein kinase B (AKT), c-Jun N-terminal kinase (JNK)/c-Jun, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-activating pathways. Prolonged shear stress induced the synthesis of 15d-PGJ2 , which is responsible for suppressing the high levels of MMP-12 at 48 h. These in vitro observations were further validated by in vivo experiments to evaluate the mechanisms of MMP-12 upregulation during the onset of OA by high fluid shear stress. By delineating this signaling pathway, our data provide a targeted therapeutic basis for combating OA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app