Journal Article
Review
Add like
Add dislike
Add to saved papers

Challenges and future prospects for developing Ca and Mg water quality guidelines: a meta-analysis.

Anthropogenic activities have the potential to increase water hardness (Ca + Mg) in receiving waters to toxic concentrations, and thus, water quality guidelines (WQG) for Ca and Mg are warranted. However, Ca can modify Mg toxicity in Ca-poor water and additional interactions with other major ions (Na+ , K+ , HCO3 - /CO3 2- , SO4 2- and Cl- ) may occur, potentially obscuring the water hardness-effect relationship. In a meta-analysis of toxicological studies, we: (i) evaluate the performance of three WQG derivation methods, and (ii) determine the influence of several variables (acute/chronic data, anions, Ca:Mg ratios, non-geographically relevant species) on the models. We find that the most sensitive species- or species sensitivity distribution (SSD)-based WQG derivation methods greatly overestimate water hardness toxicity, particularly if non-resident species are included. Broad-scale implementation of most sensitive species- or SSD-based WQG is impractical because water hardness varies beyond and within the regional scale. Anion type does not affect water hardness toxicity across species, but the Ca : Mg ratio is toxicologically relevant, underscoring the importance of considering ion ratios when developing major ion WQG. Although data supporting formal water hardness WQG are unavailable, we suggest using a two-component background condition approach that supports simultaneous management of water hardness and Ca : Mg ratio, and WQG that are applicable beyond the regional scale.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app