Add like
Add dislike
Add to saved papers

Are sulfate effects in the mayfly Neocloeon triangulifer driven by the cost of ion regulation?

Elevated major ion concentrations in streams are commonly observed as a consequence of resource extraction, de-icing and other anthropogenic activities. Ecologists report biodiversity losses associated with increasing salinity, with mayflies typically being highly responsive to increases of different major ions. In this study, we evaluated the performance of the mayfly Neocloeon triangulifer reared for its entire larval phase in a gradient of sulfate concentrations. Two natural waters were amended with SO4 as a blend of CaSO4 and MgSO4 and exposures ranged from 5 to 1500 mg l-1 SO4. Survival (per cent successful emergence to the subimago stage) was significantly reduced at the highest SO4 concentration in both waters, while development was significantly delayed at 667 mg l-1 SO4 Final sub-adult body weights were consistent across treatments, except at the highest treatment concentration. Despite evidence for sulfate uptake rates increasing with exposure concentrations and not being saturated at even extremely high SO4 concentrations, total body sulfur changed little in subimagos. Together, these results suggest that elevated SO4 imposes an energetic demand associated with maintaining homeostasis that is manifested primarily as reduced growth rates and associated developmental delays. We identified two genes related to sulfate transport in N. triangulifer This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app