Add like
Add dislike
Add to saved papers

Capillary electrophoresis with dual diode array detection and tandem mass spectrometry to access cardiovascular biomarkers candidates in human urine: Trimethylamine-N-Oxide and l-carnitine.

A capillary electrophoresis with diode array and tandem mass spectrometry detection (CE-UV-MS/MS) method has been developed for the targeted assessment of cardiovascular biomarkers candidates, trimethylamine-N-Oxide (TMAO) and l-carnitine, and creatinine in human urine samples. The dual detection was applied due to the high concentration of creatinine (monitored by UV detection at 200 nm) in relation to TMAO and l-carnitine (quantified by selected reaction monitoring (SRM) mass spectrometry), in human urine. All instrumental parameters, sheath liquid (SHL) and background electrolyte (BGE) compositions were optimized with a pool of urine provided by adult healthy volunteers and evaluated by signal-to-noise ratio (SNR) and peak shape of TMAO. The compositions for the optimized BGE was formic acid at concentration of 0.10 mol L-1 , and for SHL was 70:30 MeOH:H2 O containing 0.05% (v/v) formic acid, delivered at a flow rate of 5 μL min-1 . Limits of detection for TMAO, l-carnitine and creatinine were 0.76, 0.54 and 303 μmol L-1 , respectively. Limits of quantification were 2.5, 1.8 and 1000 μmol L-1 , respectively. Linearity was evaluated by ANOVA and presented R2 from 0.993 to 0.997. Precision and accuracy were evaluated at three concentration levels. Coefficients of variation (CV) from 1 to 21% were obtained for the intra-day precision evaluation and from 2 to 16% for the inter-day precision evaluation. The recovery ranged from 75 to 116%. Quantitation of TMAO and l-carnitine in infarcted patients urine in comparison to healthy individuals indicated a 2.2 fold increase of TMAO and a 7.0 fold increase of l-carnitine. These results showed the potential applicability of the proposed method for the evaluation of TMAO and l-carnitine in urine within a panel of candidate metabolites in targeted metabolomics studies of cardiovascular diseases among other conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app