Add like
Add dislike
Add to saved papers

HMGB1 blockade significantly improves luminal fibrous obliteration in a murine model of bronchiolitis obliterans syndrome.

Transplant Immunology 2018 December 2
BACKGROUND: Although high-mobility group box-1 (HMGB1), which is a nuclear protein, was reported to enhance the allogeneic responses in transplantation, the effect of HMGB1 on bronchiolitis obliterans syndrome (BOS) is unknown.

METHODS: A murine heterotopic tracheal transplantation model was used. Protein concentrations of HMGB1, interferon-γ (IFN-γ), interleukin (IL)-10, and IL-17 were analyzed in the isografts, allografts, controls, and HMGB1-neutralizing antibody administered allografts (n = 6; Days 1, 3, 5, 7, 14, 21, and 28). The luminal fibrous occlusion was analyzed (n = 6; Days 7, 14, 21, and 28). Infiltrating CD8 and CD4 T lymphocytes around the allografts and serum levels of IFN-γ and IL-10 were evaluated (n = 6; Day 7).

RESULTS: The HMGB1 levels in the allografts were significantly increased compared with the isografts at Day 7. HMGB1 blockade did not change the IL-17 level, but decreased the IFN-γ/IL-10 ratio in the early phase (Days 5 and 7) and significantly improved the fibrous occlusion in the late phase (Days 14, 21, and 28). HMGB1 blockade significantly suppressed the CD8 T lymphocytes infiltration and decreased the serum IFN-γ/IL-10 ratio compared with the control at Day 7.

CONCLUSIONS: HMGB1 may be a trigger of the BOS pathogenesis and candidate target for the treatment of the disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app