JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Correlation between Glyoxal-Induced DNA Cross-Links and Hemoglobin Modifications in Human Blood Measured by Mass Spectrometry.

Glyoxal is an oxoaldehyde generated from the degradation of glucose-protein conjugates and from lipid peroxidation in foods and in vivo, and it is also present in the environment (e.g., cigarette smoke). The major endogenous source of glyoxal is glucose autoxidation, and the glyoxal concentrations in plasma are higher in diabetic patients than in nondiabetics. Glyoxal reacts with biomolecules forming covalently modified DNA and protein adducts. We previously developed sensitive and specific assays based on nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS) for quantification of DNA cross-linked adducts (dG-gx-dC and dG-gx-dA) and for hemoglobin adducts derived from glyoxal. In this study, we isolated and analyzed both leukocyte DNA and hemoglobin from the blood of diabetic patients and compared the adduct levels with those from nondiabetic subjects using the modified assays. The results indicated that the extents of glyoxal-induced hemoglobin modifications on α-Lys-11, α-Arg-92, β-Lys-17, and β-Lys-66 were statistically higher in diabetic patients than nondiabetics and they correlated with HbA1c significantly. Moreover, the levels of dG-gx-dC in leukocyte DNA correlated positively with the extents of globin modification at α-Lys-11 and β-Lys-17, while levels of dG-gx-dA correlated with those at α-Lys-11 and α-Arg-92 in nonsmoking subjects. Comparing the levels and the correlation coefficients of these hemoglobin and DNA adducts including or excluding smokers, it appears that smoking is not a major contributor to glyoxal-induced adduction of hemoglobin and leukocyte DNA. To the best of our knowledge, this is one of the few reports of positive correlation between DNA and protein adducts of the same compound (glyoxal) in the blood from the same subjects. Because of the high abundance of hemoglobin in blood, the results indicate that quantification of glyoxal-modified peptides in hemoglobin might serve as a dosimetry for glyoxal and a practical surrogate biomarker for assessing glyoxal-induced DNA damage and its prevention.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app