Add like
Add dislike
Add to saved papers

Electrochemical potential zone of viability on CoCrMo surfaces is affected by cell type: Macrophages under cathodic bias are more resistant to killing.

Electrochemical interactions at the cell-metal interface determine cell viability and influence behavior in response to different electrode potential conditions, specifically cathodic biases. Mechanically assisted crevice corrosion, for example, induces cathodic potentials and the associated electrochemical consequences of increased reduction reactions at the implant surface may affect cell viability in a manner that is different for various cell phenotypes. Monocyte macrophage-like U937 cells were cultured on cobalt-chromium-molybdenum (CoCrMo) metal surfaces in vitro for 24 h to assess cell behavior in response to sustained applied voltages. The electrochemical zone of viability for U937 cells polarized for 24 h in vitro was -1000 ≤ mV < +500, compared to -400 < mV < +500 for MC3T3-E1 preosteoblast-like cells cultured under the same conditions, likely as a result of intrinsic apoptosis. Voltages above +250 mV had a lethal effect on U937 cells that was similar to that seen previously for MC3T3-E1 cells on biased CoCrMo surfaces. It appears that cell phenotype directly influences behavior in response to cathodic electrochemical stimuli and that the monocyte macrophage-like cells are more resistant to cathodic potential stimuli than preosteoblasts. This may be due to a glutathione-based increased ability to quench reactive oxygen species and inflammatory-associated radicals hypothesized to be generated during reduction of oxygen. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 00A: 000-000, 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app