Add like
Add dislike
Add to saved papers

Optimization and Pharmacological Characterization of Receptor-Mediated G i/o Activation in Postmortem Human Prefrontal Cortex.

The biochemical abnormalities in transmembrane signal transduction mediated through G protein-coupled receptors (GPCRs) have been postulated as underlying pathophysiology of psychiatric diseases such as schizophrenia and mood disorders. In the present study, the experimental conditions of agonist-induced [35 S]GTPγS binding in postmortem human brain membranes were optimized, and the responses induced by a series of agonists were pharmacologically characterized. The [35 S]GTPγS binding assay was performed in postmortem human prefrontal cortical membranes by means of filtration techniques, and standardized as to GDP concentration, membrane protein content, MgCl2 and NaCl concentrations in assay buffer, incubation period, and effect of white matter contamination. Under the standard assay conditions, the specific [35 S]GTPγS binding was stimulated by the addition of 15 compounds in a concentration-dependent manner. Of these agonists, R(+)-8-OH-DPAT, UK-14,304, DAMGO, and DPDPE showed apparently biphasic concentration-response curves. As for these four responses, only higher-potency site was pharmacologically characterized. The receptors involved in the responses investigated were 5-HT1A receptor (probed with R(+)-8-OH-DPAT or 5-HT), α2A -adrenoceptor (UK-14,304 or (-)-epinephrine), M2 /M4 mAChRs (carbachol), adenosine A1 receptor (adenosine), histamine H3 receptor (histamine), group II mGlu (L-glutamate), GABAB receptor (baclofen), μ-opioid receptor (DAMGO or endomophin-1), δ-opioid receptor (DPDPE or SNC-80), and NOP (nociceptin). Although dopamine also activated specific [35 S]GTPγS binding, this response was likely mediated via α2A -adrenoceptor, but not dopamine receptor subtypes. The present study provides us with fundamental aspects of the strategy for elucidation of probable abnormalities of neural signalling mediated by G-proteins activated through multiple GPCRs in the brain of psychiatric patients. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app