Add like
Add dislike
Add to saved papers

microRNAs-107 inhibited autophagy, proliferation, and migration of breast cancer cells by targeting HMGB1.

PURPOSE: To investigate the effects of microRNAs-107 (miR-107) on autophagy, proliferation, and migration of breast cancer cells and its mechanism by targeting high mobility group protein B1 (HMGB1).

METHODS: Real-time polymerase chain reaction assay was used to detect the expression of miR-107 in breast cancer and its cell lines. In MDA-MB-231 and MDA-MB-453 breast cancer cells, the expression of p62, Beclin1 protein, and the changes of cell proliferation and migration after overexpression of m miR-107 were detected by Western blotting, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and transwell assays. Target Scan online prediction, dual luciferase reporter gene, and Western blot were used to verify the targeting relationship between miR-107 and HMGB1. The effects of silencing HMGB1 expression on p62, Beclin1 protein expression, cell proliferation, and migration ability were detected. The transfected MDA-MB-453 cells were inoculated into the right axilla of the nude mice, the tumor volume and weight were weighed, and the expression of miR-107, HMGB1, p62, and Beclin1 in the tumor were detected.

RESULTS: The expression of miR-107 was downregulated in breast cancer tissues and cell lines (P < 0.01). The expression of p62 protein was upregulated (P < 0.01), while Beclin1 protein was downregulated (P < 0.01) and cell proliferation and migration ability were decreased (P < 0.01) after overexpressing miR-107 in MDA-MB-231 and MDA-MB-453 cells. The results of TargetScan online prediction, dual luciferase reporter gene, and Western blot showed that miR-107 could regulate HMGB1 expression. The expression of p62 protein was upregulated (P < 0.01), while Beclin1 protein was downregulated (P < 0.01) and cell proliferation and migration ability were decreased (P < 0.01) after silencing HMGB1 in MDA-MB-231 and MDA-MB-453 cells. The results of xenograft experiments showed that miR-107 could delay tumor growth and inhibit autophagy.

CONCLUSION: miR-107 could inhibit cell autophagy, proliferation, and migration of breast cancer cells by targeting HMGB1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app