Add like
Add dislike
Add to saved papers

Oncogenic dependence of glioma cells on kish/TMEM167A regulation of vesicular trafficking.

Glia 2018 December 3
Genetic lesions in glioblastoma (GB) include constitutive activation of PI3K and EGFR pathways to drive cellular proliferation and tumor malignancy. An RNAi genetic screen, performed in Drosophila melanogaster to discover new modulators of GB development, identified a member of the secretory pathway: kish/TMEM167A. Downregulation of kish/TMEM167A impaired fly and human glioma formation and growth, with no effect on normal glia. Glioma cells increased the number of recycling endosomes, and reduced the number of lysosomes. In addition, EGFR vesicular localization was primed toward recycling in glioma cells. kish/TMEM167A downregulation in gliomas restored endosomal system to a physiological state and altered lysosomal function, fueling EGFR toward degradation by the proteasome. These endosomal effects mirrored the endo/lysosomal response of glioma cells to Brefeldin A (BFA), but not the Golgi disruption and the ER collapse, which are associated with the undesirable toxicity of BFA in other cancers. Our results suggest that glioma growth depends on modifications of the vesicle transport system, reliant on kish/TMEM167A. Noncanonical genes in GB could be a key for future therapeutic strategies targeting EGFR-dependent gliomas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app