Add like
Add dislike
Add to saved papers

Intrapallidal injection of botulinum toxin A recovers gait deficits in a parkinsonian rodent model.

Acta Physiologica 2018 December 4
AIM: Modulation of electrical activity in the subthalamic nucleus has been therapeutically effective in Parkinson's disease. Pharmacological manipulation of glutamate release from subthalamic neurons could also favourably alter basal ganglia activity to improve motor symptoms. This study investigates the efficacy of selective suppression of hyperactive glutamatergic input from the subthalamic nucleus to the globus pallidus internal segment by botulinum toxin A (BoNT-A) in a parkinsonian model.

METHODS: Unilateral 6-hydroxydopamine lesioned parkinsonian rodents and controls received microinfusions of BoNT-A or vehicle into the ipsilateral internal globus pallidus (n = 8 per group). Changes in gait were measured by the CatWalk apparatus, along with assessment of apomorphine-induced rotational behaviour prior to and following BoNT-A injection. Immunofluorescent staining for markers of glutamatergic, GABAergic and total terminals was performed at the internal globus pallidus.

RESULTS: Administration of a single dose of BoNT-A (0.5 ng) significantly improved the rotational asymmetry and gait abnormalities. Ameliorations in speed, body speed variation, cadence and walking pattern were comparable to pre-lesioned animals, and persisted up to 1 month following BoNT-A injection. These changes are associated to BoNT-A's ability to selectively target glutamatergic terminals.

CONCLUSION: Blockade of subthalamic hyperactivity by BoNT-A leads to sufficient reorganization in the basal ganglia needed to generate a consistent rhythmic pattern of walking. This suggests the potential use of intracerebral BoNT-A to produce effective neuromodulation in the parkinsonian brain, as well as expansion into other neurodegenerative disorders linked to excitotoxity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app