JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Correlation between microbes and colorectal cancer: tumor apoptosis is induced by sitosterols through promoting gut microbiota to produce short-chain fatty acids.

The diversity of the bacterial community in the gut is closely related to human health. Gut microbes accomplish multiple physiological and biochemical functions. Sitosterols are a series of phytochemicals that have multiple pharmacological activities and are used as cholesterol-lowering drugs in clinical practice. In this study, we investigated the roles of bacteria and short-chain fatty acids (SCFAs) to the anti-colorectal cancer (anti-CRC) effects of sitosterols in BALB/c nude mice. Sitosterols were administered orally and gut microbiota composition and intestinal SCFAs changes were analyzed. The correlation between gut microbiota, SCFAs, and tumor apoptosis was assessed by a series of in vivo and in vitro experiments. Tumor growth in the mice was inhibited by sitosterol-treatment. Mechanistic studies revealed that sitosterol-treatment reduced the expression of PI3K/Akt, promoted the activation of Bad, decreased Bcl-xl, and enhanced cyto-c release, leading to caspase-9 and caspase-3 activation, PARP cleavage, and apoptosis. 16S rDNA analysis revealed that the diversity of microbiota, particularly phyla Bacteroidetes and Firmicutes, reduced dramatically in the gut of tumor-bearing mice, whilst treatment with sitosterols reversed these changes. The levels of SCFAs in the fecal samples of sitosterol-treated mice increased, leading to cancer cell apoptosis in vitro. Moreover, tumor apoptosis was induced after mice received a daily dose of 2 × 108  CFU/0.2 mL Lactobacillus pentosus or 20 mM/0.2 mL SCFAs. Taken together, these results demonstrate that sitosterols maintain a diverse microbial environment and enrich the content of L. pentosus in the gut, leading to the production of beneficial metabolites including SCFAs that promote tumor apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app