Add like
Add dislike
Add to saved papers

Design methodology for a simulator of a robotic surgical system.

Traditional spinal surgery procedures are completed with limited direct visualization. This imposes limitations on the surgeon's ability to place screws into the spine. The Mazor Renaissance robotic system was developed to improve the accuracy of pedicle screw insertion. Current training for this device comes with significant constraints. This suggests that a simulation-based solution may be valuable to the current training. This paper describes efforts to apply the theories of human-system integration (HSI) and instructional system design to define the requirements for a design of a simulator for specific robotic surgery system. From this, an instructional plan was conducted, to which an HSI-driven design document for a simulation system was developed. This paper describes the efforts to create a design method for a simulator of a specific robotic surgery system and provides a blended design process, which can be used during the early life cycle of any surgical simulation design.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app