Add like
Add dislike
Add to saved papers

A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage.

Nature Communications 2018 November 31
Sodium transition metal oxides with layered structures are attractive cathode materials for sodium-ion batteries due to their large theoretical specific capacities. However, these layered oxides suffer from poor cyclability and low rate performance because of structural instability and sluggish electrode kinetics. In the present work, we show the sodiation reaction of Mn3 O4 to yield crystal water free NaMnO2-y-δ (OH)2y , a monoclinic polymorph of sodium birnessite bearing Na/Mn(OH)8 hexahedra and Na/MnO6 octahedra. With the new polymorph, NaMnO2-y-δ (OH)2y exhibits an enlarged interlayer distance of about 7 Å, which is in favor of fast sodium ion migration and good structural stability. In combination of the favorable nanosheet morphology, NaMn2-y-δ (OH)2y cathode delivers large specific capacity up to 211.9 mAh g-1 , excellent cycle performance (94.6% capacity retention after 1000 cycles), and outstanding rate capability (156.0 mAh g-1 at 50 C). This study demonstrates an effective approach in tailoring the structural and electrochemical properties of birnessite towards superior cathode performance in sodium-ion batteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app