Add like
Add dislike
Add to saved papers

A novel environmental-friendly nanobiocomposite synthesis by EDTA and chitosan functionalized magnetic graphene oxide for high removal of Rhodamine B: Adsorption mechanism and separation property.

Chemosphere 2018 November 17
The synergistic combination of two different environmentally friendly functional groups (EDTA and Chitosan) with magnetic graphene oxide (mGO) nano-sheets was used for synthesizing a promising nanobiocomposite adsorbent (CS-EDTA-mGO) for efficient removal of a cationic dye, Rhodamine B (RhB), from aqueous solutions. CS-EDTA-mGO nanobiocomposite was characterized by XRD, FTIR, VSM, TGA, and zeta potential. Further, the morphological features of the synthesized graphene oxide and mGO were examined by SEM technique. The adsorption conditions were designed and optimized by experimental design applied by faced-central composite design. CS-EDTA-mGO indicated high sorption capacity where the R% of 92% was obtained under optimal conditions (sorbent dosage = 0.14 g L-1 ; dye concentration = 114 mg L-1 ; pH = 7.5; temperature = 33 °C). The result of kinetics studies revealed that the adsorption was considerably fast and the data followed the pseudo-second-order kinetic model. The adsorption equilibrium of the cationic dye by CS-EDTA-mGO showed that the Langmuir model fitted the experimental data significantly and the maximum adsorption capacity estimated from Langmuir model was 1085.3 mg g-1 , which was highly consistent with the maximum experimental adsorption capacity. The thermodynamic parameters represented that the interaction in the adsorption process was endothermic and the randomness at the solid/solution interface increased during the process. Both physical and chemical mechanisms were involved in the adsorption process, owing to the complicated structural characteristics of the nanobiocomposite. After seven cycles of adsorption/desorption, the removal efficiency of CS-EDTA-mGO nanobiocomposite was still over 80% with little loss of adsorption capacity (≈2%).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app