Add like
Add dislike
Add to saved papers

Very high blood oxygen affinity and large Bohr shift differentiates the air-breathing siamese fighting fish (Betta splendens) from the closely related anabantoid the blue gourami (Trichopodus trichopterus).

The Siamese fighting fish, Betta splendens, and the blue gourami, Trichopodus trichopterus, are two closely related air-breathing anabantoid fishes. B. splendens is a sedentary facultative air breather frequenting often hypoxic waters, while T. trichopterus is a more active obligatory air-breather inhabiting better oxygenated waters. Despite their close taxonomic relationship, previous studies have shown inter-specific differences in both physiological and morphological plasticity. Consequently, we hypothesized that B. splendens would have the higher blood oxygen affinity characteristics typical of more hypoxia-tolerant fishes. Whole blood oxygen equilibrium curves were determined at 27 °C and pHs of 7.62, 7.44 and 7.25. At a pH of 7.62, the blood O2 affinity (P50 ) of B. splendens was just 2.9 mmHg, while that of T. trichopterus was ~5 times higher at 14.7 mmHg. There were no significant differences in P50 between males and females in either species. The Bohr coefficient in B. splendens and T. trichopterus was -1.79 and - 0.83, respectively. B. splendens, unlike T. trichopterus, showed a large Root effect. Hills cooperatively coefficient, n, was ~2 in both species, indicating a significant binding cooperative between oxygen and hemoglobin. Collectively, these differences in blood O2 transport characteristics in these two closely related species are likely correlated with the differing habitats in which they breed and inhabit as adults, as well as different activity levels. Finally, the very high blood O2 affinity of B. splendens is not extraordinary among air-breathing fish, as revealed by a review of the literature of blood oxygen affinity in air-breathing fishes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app