Add like
Add dislike
Add to saved papers

Energy efficient walking control for biped robots using interval type-2 fuzzy logic systems and optimized iteration algorithm.

ISA Transactions 2018 November 25
An energy efficient approach is proposed for the walking control of bipedal robots. To compensate the ZMP error caused by model uncertainties and external disturbances, we design a new walking controller in this paper. Different from currently available control schemes for cancelling ZMP error, our newly proposed one additionally incorporates a fuzzy logic systems(FLSs) mechanism and an iterative mechanism. By employing FLSs to deduce Center of Mass(CoM) correction according to ZMP error and designing iterative mechanism to compute the optimal joint position, the newly proposed controller exhibits an excellent performance. To tackle the control difficulties arising from physical constraints of actuators and hard-to-stabilization of biped robot, an optimized control algorithm is included in the iterative mechanism to guarantee the convergence to the optimal solution. Moreover, the interval type-2 FLSs are adopted to handle the uncertainties. Finally, the experiment results are provided to validate the proposed control scheme.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app