Add like
Add dislike
Add to saved papers

Fish gill damage by harmful microalgae newly explored by microelectrode ion flux estimation techniques.

Harmful Algae 2018 December
Harmful algal blooms (HAB) are responsible for massive mortalities of wild and aquacultured fish due to noticeable gill damage, but the precise fish-killing mechanisms remain poorly understood. A non-invasive microelectrode ion flux estimation (MIFE) technique was successfully applied to assess changes in membrane-transport processes in a model fish gill cell line exposed to harmful microplankton. Net Ca2+ , H+ , K+ ion fluxes in the rainbow trout cell line RTgill-W1 were monitored before and after addition of lysed cells of this Paralytic Shellfish Toxins (PST) producer along with purified endocellular dinoflagellate PST. It was demonstrated that PST alone do not play a role in fish gill damage during A. catenella outbreaks as previously thought, but that other ichthyotoxic metabolites from lysed algal cells (i.e. lipid peroxidation products or other unknown metabolites) result in net K+ efflux from fish gill cells and thereby gill cell death.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app