Add like
Add dislike
Add to saved papers

The effect of biochar nanoparticles on rice plant growth and the uptake of heavy metals: Implications for agronomic benefits and potential risk.

The interaction between biochar nanoparticles (nano-BC) and plant roots in the rhizosphere is largely unknown, although it is crucial for understanding the role of BC in plant growth and bioavailability of pollutants. The effect of nano-BC produced at a series of temperatures (300-600 °C) on alleviating the phytotoxicity of Cd2+ to rice plants was investigated from the aspects of biochemical changes and Cd uptake in this study. The kinetics of Cd2+ fluxes in different root zones in the presence of nano-BC were also measured using a scanning ion-selective electrode technique. We found that the high-temperature nano-BC could more significantly alleviate the phytotoxicity of Cd2+ than the low-temperature and bulk BCs as reflected by the higher increased biomass, root vitality, chlorophyll content, and decreased MDA content as well as relative electrical conductivity of rice plants, which is due to the high adsorption affinity of nano-BC for Cd2+ . Also, for the first time we demonstrated that nano-BC could differentially affect the net flux of Cd2+ in different zones of the root tips. However, nano-BC (especially that produced at higher temperatures) more significantly increased the contents of antioxidative enzyme activities (e. g., SOD, POD, and CAT) and soluble protein than the treatment only with Cd2+ (5.0 mg/L), indicating that nano-BC could induce oxidative stress in the rice plants. These results indicate that nano-BC could greatly reduce the uptake and phytotoxicity of Cd2+ , but its potential risk should not be overlooked during the environmental and agricultural applications of biochar.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app