Add like
Add dislike
Add to saved papers

Synthesis, molecular modeling and BACE-1 inhibitory study of tetrahydrobenzo[b] pyran derivatives.

Bioorganic Chemistry 2018 November 20
β-Secretase (BACE1) has been broadly documented as one of the possible therapeutic targets for the treatment of Alzheimer's disease. In this paper, we report the synthesis and the for β-secretase (BACE-1) inhibitory activity of new series of tetrahydrobenzo [b] pyran derivatives. One-pot synthesis of tetrahydrobenzo [b] pyrans was carried out by condensing aromatic aldehyde, malononitrile and 1,3-cyclohexanedione using ionic liquid 1-butyl-3-methyl imidazolium chloride ([bmIm]Cl- ) in aqueous alcohol media. The addition of alcohol and water in the ratio of 1:2 keeps all the reactants in solution which facilitates the reaction and makes the product formation very easy. The synthesized compounds were subjected to BACE1 inhibition assay and six compounds, 4d, 4e, 4f, 4h, 4i, and 4p have shown significant IC50 values at micromolar level. Among these six active compounds, 4e was a potential inhibitor with its IC50 value in nanomolar range. All the synthesized compounds were docked onto the active site of β-Secretase enzyme.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app