Add like
Add dislike
Add to saved papers

Protective effects of tetramethylpyrazine analogue Z-11 on cerebral ischemia reperfusion injury.

The aim of our study was to investigate the effects of a new synthetic compound (E) -1- (E) -1- (2- hydroxy -5- chlorophenyl) -3- (3, 5, 6- three methyl pyrazine -2- based) -2- propylene -1 ketone, Z-11, a tetramethylpyrazine analogue, on cerebral ischemia reperfusion injury and the underlying mechanism. 240-260 g adult male Wistar rats were subjected to middle cerebral artery occlusion for 2 h, followed by 22 h of reperfusion. Z-11 (1.7, 3.4 and 6.8 mg/kg, i.p.), Edaravone (3 mg/kg, i.p.) and DMSO (1‰, i.p.) was administered at 2 h after the onset of ischemia. The rats' neurological score, infarct volume, and body weight change were tested, and some oxidative stress markers such as superoxide dismutase (SOD) activity, glutathione (GSH) and malondialdehyde (MDA) contents were evaluated after 22 h of reperfusion. Results showed that neurologic deficit, infarct volume and body weight change were ameliorated after cerebral ischemia reperfusion, and that Z-11 exhibits an excellent effect at a dosage of 6.8 mg/kg. This dose also reduced the content of MDA, and upregulated SOD activity and GSH content. Similarly, 6.8 mg/kg Z-11 treatment inhibited the reactive oxygen species content and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, with the protein levels of Ras-related C3 botulinum toxin substrate1(Rac-1) and mitogenic oxidase (Nox2) downregulated even further. Moreover, the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream anti-oxidant protein heme oxygenase-1 (HO-1) were upregulated. This indicates that Z-11 could play a protective role in cerebral ischemia-reperfusion injury, and that the protective effect of Z-11 may be related to improvements in the antioxidant capacity of brain tissue. The mechanisms are associated with enhancing oxidant defence systems via the activation of Nrf2/HO-1 and Rac-1/NADPH oxidase pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app