Add like
Add dislike
Add to saved papers

Effects of seating load magnitude and load orientation on seating mechanics in 5°40' mixed-alloy modular taper junctions.

Journal of Biomechanics 2018 November 5
BACKGROUND: Mechanically-assisted crevice corrosion of modular tapers continues to be a concern in total joint replacements. Surgical factors that may affect taper seating mechanics include seating load magnitude and load orientation. Seating mechanics is defined as the seating load versus displacement behavior. In this study, mixed-alloy (CoCrMo/Ti-6Al-4V) modular head-neck 5°40' taper junctions were seated over a range of axially-oriented loads and off-axis orientations, capturing load-displacement during seating. The goals of the study were to assess the effects of seating load magnitude and load orientation on seating mechanics and correlate those findings with the taper pull-off load.

METHODS: A testing fixture measured head-neck seating displacement as the load was quasistatically applied. Motion was captured using two non-contact differential variable reluctance transducers which were mounted to the neck targeting the head. Seating experiments ranged from 1000 N to 8000 N. Load orientation ranged from 0° to 20° at 4000 N.

RESULTS: Seating load-displacement behavior at different seating loads showed a consistent characteristic behavior. Testing demonstrated increased seating displacement with seating load. Pull-off loads increased with seating load and were approximately 44% of the seating load across the range of seating loads investigated. Seating load orientation up to 20° had no significant effect on seating displacement and taper pull-off load.

CONCLUSION: Increased seating load magnitude increased seating displacement, work of seating and pull-off loads in mixed-alloy 5°40' head-neck tapers. Altering load orientation up to 20° off-axis had no significant effect. Direct measurements of seating mechanics provides insights into the locking of taper junctions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app