Add like
Add dislike
Add to saved papers

Thermal characterization of gallium oxide Schottky barrier diodes.

The higher critical electric field of β-gallium oxide (Ga2 O3 ) gives promise to the development of next generation power electronic devices with improved size, weight, power, and efficiency over current state-of-the-art wide bandgap devices based on 4H-silicon carbide (SiC) and gallium nitride (GaN). However, it is expected that Ga2 O3 devices will encounter serious thermal issues due to the poor thermal conductivity of the material. In this work, self-heating in Ga2 O3 Schottky barrier diodes under different regimes of the diode operation was investigated using diverse optical thermography techniques including thermoreflectance thermal imaging, micro-Raman thermography, and infrared thermal microscopy. 3D coupled electro-thermal modeling was used to validate experimental results and to understand the mechanism of heat generation for the diode structures. Measured top-side and cross-sectional temperature fields suggest that device and circuit engineers should account for the concentrated heat generation that occurs near the anode/Ga2 O3 interface and/or the lightly doped drift layer under both forward and high voltage reverse bias conditions. Results of this study suggest that electro-thermal co-design techniques and top-side thermal management solutions are necessary to exploit the full potential of the Ga2 O3 material system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app