Add like
Add dislike
Add to saved papers

Predicting the Biodegradation of Magnesium Alloy Implants: Modeling, Parameter Identification, and Validation.

Bioengineering 2018 November 30
Magnesium (Mg) and its alloys can degrade gradually up to complete dissolution in the physiological environment. This property makes these biomaterials appealing for different biomedical applications, such as bone implants. In order to qualify Mg and its alloys for bone implant applications, there is a need to precisely model their degradation (corrosion) behavior in the physiological environment. Therefore, the primary objective develop a model that can be used to predict the corrosion behavior of Mg-based alloys in vitro, while capturing the effect of pitting corrosion. To this end, a customized FORTRAN user material subroutine (or VUMAT) that is compatible with the finite element (FE) solver Abaqus/Explicit (Dassault Systèmes, Waltham, MA, USA) was developed. Using the developed subroutine, a continuum damage mechanism (CDM) FE model was developed to phenomenologically estimate the corrosion rate of a biocompatible Mg⁻Zn⁻Ca alloy. In addition, the mass loss immersion test was conducted to measure mass loss over time by submerging Mg⁻Zn⁻Ca coupons in a glass reactor filled with simulated body fluid (SBF) solution at pH 7.4 and 37 °C. Then, response surface methodology (RSM) was applied to calibrate the corrosion FE model parameters (i.e., Gamma (γ), Psi (ψ), Beta (β), and kinetic parameter (Ku )). The optimum values for γ, ψ, β and Ku were found to be 2.74898, 2.60477, 5.1, and 0.1005, respectively. Finally, given the good fit between FE predictions and experimental data, it was concluded that the numerical framework precisely captures the effect of corrosion on the mass loss over time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app