Add like
Add dislike
Add to saved papers

Characterization and Antiproliferative Activity of a Novel 2-Aminothiophene Derivative-β-Cyclodextrin Binary System.

The novel 2-aminothiophene derivative 2-amino-4,5,6,7-tetrahydrobenzo[ b ]thiophene-3-carbonitrile (6CN) has shown potential anti-proliferative activity in human cancer cell lines. However, the poor aqueous solubility of 6CN impairs its clinical use. This work aimed to develop binary 6CN-β-cyclodextrin (βCD) systems with the purpose of increasing 6CN solubility in water and therefore, to improve its pharmacological activity. The 6CN-βCD binary systems were prepared by physical mixing, kneading and rotary evaporation methods and further characterized by FTIR, XRD, DSC, TG and SEM. In addition, molecular modeling and phase solubility studies were performed. Finally, MTT assays were performed to investigate the cytostatic and anti-proliferative effects of 6CN-βCD binary systems. The characterization results show evident changes in the physicochemical properties of 6CN after the formation of the binary systems with βCD. In addition, 6CN was associated with βCD in aqueous solution and the solid state, which was confirmed by molecular modeling and the aforementioned characterization techniques. Phase solubility studies indicated that βCD forms stable 1:1 complexes with 6CN. The MTT assay demonstrated the cytostatic and anti-proliferative activities of 6CN-βCD binary systems and therefore, these might be considered as promising candidates for new anticancer drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app