Add like
Add dislike
Add to saved papers

Diagnosis of undesired scenarios in hydrogen production by photo-fermentation.

This study presents the use of a machine learning method from the artificial intelligence area, such as the support vector machines, applied to the construction of data-based classification models for diagnosing undesired scenarios in the hydrogen production process by photo-fermentation, which was carried out by an immobilized photo-bacteria consortium. The diagnosis models were constructed with data obtained from simulations run with a mechanistic model of the process and assessed on both modelled and experimental batches. The results revealed a 100% diagnosis performance in those batches where light intensity was below and above an optimum operation range. Nevertheless, 55% diagnosis performance was obtained in modelled batches where pH was away from its optimum operation range, showing that diagnosis model predictions during the first observations of those batches were classified as normal operation and revealing diagnosis delay in pH oscillations. In general, results demonstrate the reliability of classification models to be used in future applications such as the on-line process monitoring to detect and diagnose undesired operating conditions and take corrective actions on time to maintain high hydrogen productivities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app