Add like
Add dislike
Add to saved papers

An electric potential modulated cascade of catalyzed hairpin assembly and rolling chain amplification for microRNA detection.

Biosensors & Bioelectronics 2018 September 29
MicroRNAs serve as a new type of biomarker for multifarious diseases due to its critical roles in post transcriptional gene regulation. Herein, we firstly integrate the catalyzed hairpin assembly (CHA) and rolling circle amplification (RCA) into an electrochemical biosensor for sensitive and specific detection of miR-21. Meanwhile, an electric potential was employed to modulate the efficiency of CHA occurred on the electrode, which offer a simple but effective method to surmount the accessibility problem of probes. The biosensor achieved an ultrasensitive determination of miR-21 with a low limit of detection of 13.5 fM and a linear range from 15 fM to 250 pM. This research encourages us to challenge the hyphenated multiple amplification strategies and provides a stable and effective method for the detection of diseases-related miRNAs in peripheral biofluids, as well as paves a road for the future clinical diagnostics and treatment of disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app