Add like
Add dislike
Add to saved papers

Molecular detection and quantification of slug parasitic nematodes from the soil and their hosts.

Terrestrial gastropod molluscs are widely distributed and are well known as pests of many types of plants that are notoriously difficult to control. Many species of nematodes are able to parasitize land snails and slugs, but few of them are lethal to their host. Species and/or populations of mollusc-parasitic nematodes (MPNs) that kill their hosts are promising for biological control purposes. The recent discovery of new nematode species of the genus Phasmarhabditis in Europe and the associations between Alloionema spp. and slugs are expanding the possibilities of using MPNs as control agents. However, very little is known about the distribution and ecology of these species. Using molecular techniques for quick identification and quantification of various species of MPN isolated directly from the soil or from infected hosts can assist in providing information on their presence and persistence, as well as the composition of natural assemblages. Here, we developed new primers and probes for five species of the genus Phasmarhabditis and one species of the genus Alloionema. We employed these novel molecular techniques and implemented a published molecular set to detect MPN presence in soil samples coming from natural and agricultural areas in Switzerland. We also developed a method that allows the detection and quantification of Phasmarhabditis hermaphrodita directly from the tissues of their slug host in a laboratory experiment. The new molecular approaches were optimized to a satisfactory limit of detection of the species, with only few cross-amplifications with closely related species in late cycles (> 32). Using these tools, we detected MPNs in 7.5% of sampled sites, corresponding to forest areas (P. hermaphrodita and Allionema appendiculatum) and wheat-oriented agricultural areas (Phasmarhabditis bohemica). Moreover, we confirmed that the method can be used to detect the presence of P. hermaphrodita inside slug hosts, with more detections in the susceptible slug Deroceras sp. compared to the resistant Arion sp. These primers/probe sets provide a novel and quick tool to identify MPNs from soil samples and infected slugs without having to culture and retrieve all nematode life stages, as well as a new tool to unravel the ecology of nematode-slug complexes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app