Add like
Add dislike
Add to saved papers

Bacteria-Targeted Supramolecular Photosensitizer Delivery Vehicles for Photodynamic Ablation Against Biofilms.

Photodynamic therapy (PDT) is believed to be a potent method for biofilm treatments. However, undesired damage to normal cells may be caused due to the nonselective nature of PDT. Therefore, targeted PDT is preferred on one hand to enhance antimicrobial effects and on the other hand to reduce cytotoxicity to normal cells. For this purpose, novel bacteria-targeted photosensitizer delivery micelles are fabricated, taking advantage of α-cyclodextrin (α-CD)/polyethylene glycol (PEG) supramolecular assembly. Hydrophilic antimicrobial peptide (AMP) Magainin I is covalently bound with PEG, working as a bacterial targeting group as well as the stabilizing shell of the supramolecular micelles. Photosensitizer Chlorin e6 (Ce6) is grafted onto α-CD. The micelles exhibit excellent bacterial targeting effects. Compared to α-CD-Ce6, the supramolecular micelles possess enhanced biofilm killing ability against Gram (-) Pseudomonas aeruginosa biofilms and Gram (+) methicillin-resistant Staphylococcus aureus (MRSA) biofilms while reducing cytotoxicity to NIH/3T3 model cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app