Add like
Add dislike
Add to saved papers

Engineering Protective Polymer Coatings for Liver Microtissues.

Three-dimensional (3D) hepatocyte microtissues (MT), also known as spheroids, have proven to be advantageous in providing more accurate information and physiologically relevant and predictive data for liver-related in vivo tests; therefore, spheroids have increasingly been used to study hepatotoxicity, drug delivery to the liver, and tissue engineering. However, variabilities in the generation of 3D MT remain a major challenge. Methods which encapsulate and protect hepatocytes offer a promising pathway in prolonging cell survival, as well as maintaining its pristine cell functions. Herein, we studied the encapsulation and resultant protective effects of hydrogen bonded, biocompatible polymer coatings for hepatocytes MT in 3D cell culture. We exposed the MT to hepatotoxic nanomaterials (NMs), such as graphene oxide (GO) and cobalt oxide (Co3O4), to assess the protective effects of poly(vinylpyrrolidone) (PVPON) and tannic acid (TA) coatings. The polymer coating allowed the MT to maintain its morphology. More significantly, it increased the viability of hepatocytes-composed MT by hampering the cellular interaction between hostile NMs and hepatocytes. Based on alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, the liver cell function was maintained throughout the coating process, including after NMs treatment. The study provides a straightforward and safe methodology for maintaining the morphology as well as cellular function of hepatocyte MT in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app