Journal Article
Review
Add like
Add dislike
Add to saved papers

Hydrogen sulfide and hepatic lipid metabolism - a critical pairing for liver health.

Hydrogen sulfide (H2 S) is the most recently recognized gasotransmitter, influencing a wide range of physiological processes. As a critical regulator of metabolism, H2 S has been suggested to be involved in the pathology of many diseases, particularly obesity, diabetes and cardiovascular disorders. Its involvement in liver health has been brought to light more recently, particularly through knockout animal models, which show severe hepatic lipid accumulation upon ablation of H2 S metabolic pathways. A complex relationship between H2 S and lipid metabolism in the liver is emerging, which has significant implications for liver disease establishment and/or progression, regardless of the disease-causing agent. In this review, we discuss the critical importance of H2 S in hepatic lipid metabolism. We then describe the animal models so far related with H2 S and lipid-associated liver disease, as well as H2 S-based treatments available. Finally, we highlight important considerations for future studies and identify areas in which much still remains to be determined.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app