Add like
Add dislike
Add to saved papers

Age-dependent release of high-mobility group box protein-1 (HMGB1) and cellular neuroinflammation after traumatic brain injury in mice.

Accumulating research suggests that children may be more vulnerable to poor long-term outcomes after traumatic brain injury (TBI) compared to adults. The neuroinflammatory response, known to contribute to neuropathology after TBI, appears to differ depending upon age-at-insult, though this response has not been well-characterized. Elevated levels of a key initiator of inflammation, high mobility group box protein 1 (HMGB1), have been associated with worsened outcomes after TBI in young patients. This study therefore aimed to characterize the acute time course of key mediators of the inflammatory cascade, including HMGB1, after pediatric and adult TBI. Male C57Bl/6 mice were subjected to severe controlled cortical impact or a sham control surgery, at either early adulthood (8-10 weeks) or a pediatric age (3 weeks). Cortical tissue was collected for Western blot detection of astrocyte and microglial activation (GFAP and CD68) and HMGB1 at 2 h, 6 h, 24 h, 3 d and 7 d post-injury, and serum was collected for enzyme-linked immunoassays to quantify peripheral HMGB1. An additional cohort of brains were harvested at 3 d post-injury for immunofluorescence staining. Results demonstrated a temporal profile of CD68, GFAP and HMGB1 after TBI relative to sham, which differed between the adult and pediatric cohorts. An increase in peripheral HMGB1 was found in serum from pediatric TBI mice, which was not evident in adult serum. Together, these findings demonstrate that HMGB1 and the downstream cellular inflammatory response is influenced by age-at-insult, which may be an important consideration for treatment strategies aiming to ameliorate this response after TBI. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app