Add like
Add dislike
Add to saved papers

Impact of Unilateral Orbital Radiotherapy on the Structure and Function of Bilateral Human Meibomian Gland.

Background: Radiotherapy (RT) has widely been used to treat ocular tumors, yet the impact of orbital radiation to the meibomian gland has rarely been studied. Our study aims at evaluating the bilateral meibomian gland structure and function 12 months after unilateral orbital RT in patients with ocular tumors.

Methods: An observational case-control study. A total of 10 eyes 12 months after unilateral orbital RT, 10 contralateral eyes, and 10 normal controls were enrolled. Meibomian gland loss (MGL), lipid layer thickness (LLT), tear film breakup time (TBUT), Schirmer I test, and cornea fluorescein staining were measured. Ocular Surface Disease Index (OSDI) of the RT patients was assessed and compared with normal controls.

Results: The cumulative median radiotherapy dosage for the patients was 45 (range: 30, 70) Gy. The OSDI score of the patients was significantly greater than the normal controls (22.92 (range: 10.42, 37.50) vs 6.25 (range: 2.08, 10.42), p ≤ 0.001). Significant differences of upper MGL, lower MGL, LLT, and TBUT were found between the diseased eyes and normal controls (37.79% (range: 12.87, 92.41) vs 12.63% (range: 6.13, 42.34), p =0.007; 61.31% (range: 44.67, 87.98) vs 15.53% (range: 7.65, 45.13), p ≤ 0.001; 40 ICU (range: 23, 100) vs 81.5 ICU (range: 54, 100), p =0.007; 3.5 s (range: 2, 8) vs 6.5 s (range: 5, 10), p =0.002). The upper MGL and TBUT of the contralateral eyes were also considerably damaged compared with normal controls. Lower eyelid MGL and cornea staining score of the diseased eye were significantly correlated with radiation dosage ( r  = 0.913 and 0.680; p =0.001 and 0.044, respectively).

Conclusion: Orbital radiotherapy could cause significant damage to the meibomian gland structure and function, not only the diseased eyes but also the contralateral eyes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app