Add like
Add dislike
Add to saved papers

Screening of tropical estuarine water in south-west coast of India reveals emergence of ARGs-harboring hypervirulent Escherichia coli of global significance.

The goal of this study was to investigate the involvement of a tropical Indian estuary in the emergence of antibiotic resistance genes (ARGs)-harboring hypervirulent E. coli of global significance. A total of 300 E. coli isolates was tested for antibiotic susceptibility to β-lactams, aminoglycosides, chloramphenicol, quinolones, sulphonamides, tetracyclines, and trimethoprim. The E. coli isolates were screened for the presence of antibiotic resistance genes (blaTEM , blaCTX-M , tetA, tetB, sul1, sul2, strA, aphA2, catI, dhfr1, and dhfr7), integrase (int1, int2, and int3), Shiga toxin genes (stx1 and stx2) and extraintestinal virulence genes (papAH, papC, sfa/focDE, kpsMT II, and iutA). The highest prevalence of antibiotic resistance was observed for ampicillin, followed by tetracycline, and nalidixic acid. Among E. coli isolates, 64% were resistant to at least one of the 15 antibiotics tested, and approximately 40% were multiple antibiotic-resistant (MAR). More than 40% (n = 122) of E. coli isolates had ARGs. Integrase 1 (int1) was found in 7.6% of E. coli isolates. Among E. coli isolates, 16.3% (n = 49) were extraintestinal pathogenic E. coli (ExPEC), and approximately 34.6% (n = 17) of ExPEC had ARGs. A hypervirulent ARGs-harboring STEC was isolated. The prevalence of Shiga toxin-producing E. coli (STEC) was low (n = 1). The prevalence of ARGs-harboring pathogenic E. coli isolates was higher in stations close to the City (urban area), than that of other stations. ERIC-PCR (enterobacterial repetitive intergenic consensus sequence polymerase chain reaction) analysis revealed a high degree of genetic diversity among the ARGs-harboring E. coli isolates. The results demonstrate a high prevalence of ARGs-harboring E. coli in estuarine water and confirm the need for a better wastewater treatment facility and proper control measures to reduce the discharge of sewage and wastewater into the aquatic environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app