Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Biomaterials and Gene Manipulation in Stem Cell-Based Therapies for Spinal Cord Injury.

Stem Cells and Development 2019 Februrary 16
Spinal cord injury (SCI), a prominent health issue, represents a substantial portion of the global health care burden. Stem cell-based therapies provide novel solutions for SCI treatment, yet obstacles remain in the form of low survival rate, uncontrolled differentiation, and functional recovery. The application of engineered biomaterials in stem cell therapy provides a physicochemical microenvironment that mimics the stem cell niche, facilitating self-renewal, stem cell differentiation, and tissue reorganization. Nonetheless, external microenvironment support is inadequate, and some obstacles persist, for example, limited sources, gradual aging, and immunogenicity of stem cells. Targeted stem cell gene manipulation could eliminate many of these drawbacks, allowing safer, more effective use under regulation of intrinsic mechanisms. Additionally, through genetic labeling of stem cells, their role in tissue engineering may be elucidated. Therefore, combining stem cell therapy, materials science, and genetic modification technologies may shed light on SCI treatment. Herein, recent advances and advantages of biomaterials and gene manipulation, especially with respect to stem cell-based therapies, are highlighted, and their joint performance in SCI is evaluated. Current technological limitations and perspectives on future directions are then discussed. Although this combination is still in the early stages of development, it is highly likely to substantially contribute to stem cell-based therapies in the foreseeable future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app